Fluid Force Microscopy

Shuai Zhang

Physical Sciences Division, Pacific Northwest National Laboratory Materials Science and Engineering, University of Washington shuai.zhang@pnnl.gov

The available FluidForce Microscopy (FluidFM) facilities

Nanosurf AFM

One available user proposal (PI Zhang, Co-PI De Yoreo)

Bruker/JPK AFM

PNNL-Materials Science Group has approved a 500K budget for JPK AFM. The installation should be done in 4-6 months. One NSF-MRI proposal, (PI Zhang, Co-PI De Yoreo, Key personnel Ginger) is pending for another JPK AFM. MAF will be the host.

JPK AFM is not just a FluidFM!

What is FluidFM?

What can FluidFM do?

FluidFM has promising applications in single-cell biophysics.

Manipulations

Delivery, injection and extraction

Mechanical measurements

What can FluidFM do?

FluidFM has promising applications in single-cell biophysics. Single-cell patch clamp/scan ion conductance microscopy

Klausen, et al., Nat. Comm., 2016

What can FluidFM do?

Nano-print and nanofabrication

FluidFM's opportunities at CSSAS

A programmable robot for automated synthesis

Akkineni, et al. Nano letters 2023

Multi-component patterns for nano-reactors, etc.

Biomineralization, NPs attachment, etc., or multi-round writing with FluidFM

FluidFM Biomolecular ink (Peptide, peptoid,

writing

FluidFM's opportunities at CSSAS

A programmable robot for automated synthesis

Shen, et al., Nat. Nano. 2024

Deliver stimuli for assembly/crystal phase transition, etching, doping, etc.

CSSAS' success needs your efforts!

DFS of the engineered yeast cells vs. CaCO₃/ZnO/TiO₂ different facets

Acknowledgments

